
Digital Humanities: Text-as-Data
Week 5 – From Words to Numbers: Vectorization and Clustering

Steven Denney
Leiden University

BA3 Korean Studies
November 14, 2025

1 / 21



WHAT IS CLUSTERING?



Thinking About Clusters Conceptually

• Clustering is about grouping similar things together.
• Each group — a cluster — contains items that are more alike within than

they are across clusters.
• There are no “true labels” — we discover structure, not confirm it.
• In text-as-data:

• Similar language or meaning ⇒ same cluster.
• Different vocabulary or topic ⇒ different clusters.

Clustering = finding structure where none is pre-defined.

3 / 21



Cohesion and Separation

• Good clusters have two properties:
1. Cohesion – items within a cluster are close together.
2. Separation – clusters are far apart from one another.

• Distance or similarity measures provide the geometry that makes this possible.

4 / 21



Distance Matters: Euclidean vs Cosine
• Euclidean: clusters are “near” a centroid in straight-line distance (circles/balls).
• Cosine: clusters share direction (angle) regardless of length (angular wedges).

Euclidean (L2) Cosine (Angle)

similar angle

similar angle

Euclidean cares about absolute position around centroids; Cosine cares about angle (direction), ignoring length (good for text!). 5 / 21



Textbooks in Vector Space

Word Feature 1

Word Feature 2

Textbook A
Textbook B

Textbook C
Textbook Dsmall angle = similar tone

different angle = different emphasis

In our 51 textbooks, cosine similarity groups books that “speak” in similar proportions about nationalism, modernization, and identity.

6 / 21



FROM WORDS TO NUMBERS



Why We Need Numbers

• Computers cannot “read” language — they operate on numbers.
• Every text analysis method transforms text into a numeric representation.

• Once words are numbers, we can:
• measure similarity (distance between documents),
• discover structure (clustering),
• and reduce complexity (topic modeling, embeddings).

• Today: two ways to vectorize text and two ways to cluster it.

8 / 21



Two Routes from Text to Vectors

Pre-processed Text

Bag of Words
TF–IDF

Word Embedding
(fastText / BERT)

Sparse Vector (Lexical) Dense Vector (Semantic)

Two paths for converting text into numerical representations for analysis.

9 / 21



Route 1: Bag-of-Words and TF–IDF

• Bag-of-Words (BoW): represents each document by word counts.
• TF–IDF weights those counts:

TF–IDF(w , d) = TF(w , d) × log N
nw

• TF = frequency of word w in document d
• IDF = rarity of w across all N documents

• Produces a high-dimensional, sparse vector — one value per term.

• Captures lexical similarity: shared vocabulary.

10 / 21



From TF–IDF to Distance

• Each document = a vector of TF–IDF weights.
• Compute pairwise similarity:

cosine(A, B) = A · B
‖A‖‖B‖

• The Distance widget in Orange builds a matrix of all pairwise distances.
• Required for Hierarchical Clustering; optional for K-Means.

11 / 21



Route 2: Word Embeddings

• Learned from large corpora using neural networks (e.g., fastText, BERT).

• Each word or document = dense vector (300–768 dims).
• Similar meanings → vectors close together.
• Encodes semantic similarity, not just co-occurrence.

12 / 21



Vector Geometry of Meaning

king − man + woman ≈ queen

• Arithmetic on embeddings reflects relationships learned from context.
• “Meaning” becomes a location in high-dimensional space.
• Enables geometric operations: distance, clustering, visualization.

13 / 21





TF–IDF vs. Embeddings

TF–IDF Embeddings

Representation Sparse term frequencies Dense semantic vectors
Captures Lexical overlap Contextual meaning
Dimensionality Very high (1 per word) Moderate (hundreds)
Distance metric Cosine / Euclidean Cosine / Euclidean
Interpretation Shared vocabulary Shared meaning

15 / 21



WHAT WE DO WITH THESE VECTORS



Two Main Clustering Algorithms

Hierarchical Clustering
• Uses distance matrix.
• Merges closest pairs step-by-step.
• Output: dendrogram (tree of

similarity).
• Linkage choices: average, Ward, etc.

K-Means Clustering
• Works directly on vectors.
• Groups around centroids to minimize

variance:

min
k∑

i=1

∑
xj∈Ci

‖xj − µi‖2

• Output: discrete cluster labels.

17 / 21



Hierarchical Clustering in Orange

1. [Preprocess] → BoW → Distance → Hierarchical Clustering
2. [Preprocess] → Document Embedding → Distance → Hierarchical

Clustering
• The Distance widget computes pairwise cosine/Euclidean values.
• The Hierarchical widget builds and visualizes a dendrogram.

• Selecting a branch outputs that subset of documents.

18 / 21



K-Means in Orange

1. [Preprocess] → BoW → K-Means
2. [Preprocess] → Document Embedding → K-Means
• Algorithm:

1. Choose k clusters.
2. Randomly initialize centroids.
3. Assign each point to nearest centroid.
4. Recompute centroids until stable.

• Evaluate with Silhouette Plot and interpret with Word Cloud / Extract
Keywords.

19 / 21



Putting It Together

1. Preprocess text → clean tokens.
2. Choose vectorization:

• Path A: BoW → TF–IDF (lexical)
• Path B: Document Embedding (semantic)

3. Cluster:
• Hierarchical (needs Distance matrix)
• or K-Means (directly on vectors)

4. Interpret clusters → Word Cloud / Keywords.

20 / 21



NEXT WEEK: TOPIC MODELING AS DIMENSION
REDUCTION


